If that time is too much for watting here, you can safetly leave this page if you click here to be notified by email when finished. Otherwise, you will lose your results as soon as you leave.

(agriSatwebGIS® or your text)


\begin{equation} \text{In TONIpbp, let}\,R\,\text{ be }\sum_{t=0}^{t=n}{\text{ET}_t}\implies R=\int{\big(m\times f(t) + b\big)\times g(t)\,\,\mathrm{d}t} \end{equation} \(\text{being}\,\,\mathrm{d}t=24\,\text{h},\,\,f=\text{NDVI},\,\,g=\text{ET}_0,\,\,m =\) \(,\,\,b=\) \begin{equation} \text{Hereby, instead, let}\,R\,\text{ also be }\sum^{t=n}_{t=0}{\text{ET}_t}\implies R=\int{\Big(k_s\times\big(m\times f(t) + b\big) + k_e\Big)\times g(t)\,\,\mathrm{d}t} \end{equation} \(\text{being all above and}\,\,k_s=\) \(,\,\,k_e=0\)

\(\text{Ok, I got it. Now}\) \(\text{above formula}\)
\(\text{And do it}\,\forall t\)
\(\text{but only as long as any of following three cases occurs:}\)
1. \(f(t)\ge L_l\,\wedge\,\nexists t_a|t_a\lt t,\,f(t_a)\ge L_h\)
2. \(f(t)\ge L_h\,\wedge\,\exists t_a|t_a\lt t,\,f(t_a)\le L_h\)
3. \(t\le\)
\(\text{being}\,\,L_l=\) \(,\,\,L_h=\)
\(\text{ m}^2\)



\begin{equation} \text{Variability}\,\,V\,\,\text{for shape region}\,\,r\,\,\text{in pixel}\,\,P\,\,\text{at discrete point}\,(a,\,b)\,\text{is calculated as} \end{equation} \begin{equation} V_r(a,b)=\left(\left(\frac{P(a,b)}{\mu} - 1\right)\times F_{ex} + 1\right)\times 100 \end{equation} \(\text{being}\,\,F_{ex}=\) \(\text{an exacerbation factor}\) \begin{equation} \text{If you choose}\,\,\color{blue}{\text{Local}}\,\,\implies\mu=\sum_{i,j}{\frac{P(i,j)}{\vert r'\vert}}\,\,\text{where}\,\,(i,j)\in r' \end{equation} \begin{equation} \text{If you choose}\,\,\color{blue}{\text{Global}}\,\implies\mu=\sum_{i,j}{\frac{P(i,j)}{\vert R'\vert}}\,\,\text{where}\,\,(i,j)\in R'\,\wedge\,r\subset R,\,\forall r \end{equation} \(\text{Anyway,}\,\,r'\,\,\text{and}\,\,R'\,\,\text{are inner-buffered from}\,\,r\,\,\text{and}\,\,R,\,\text{being radius} =\) \(\text{ m}\) \begin{equation} \text{Relation between discrete point}\,(a,\,b)\,\text{and real point}\,(x,\,y)\,\text{is calculated as} \end{equation} \begin{equation} x = x_{min}+a\times\mathrm{d}x\,\,\,\,\,\,\,\,\, y = y_{max}-b\times\mathrm{d}y \end{equation} $$(x_{min},\,y_{max})\,\,\text{is the real point located at top-left corner}\\ \mathrm{d}x\,\,\text{is the pixel horizontal resolution in longitude unit}\\ \mathrm{d}y\,\,\text{is the pixel vertical resolution in latitude unit}$$
\(\text{Ok, I got it. Now}\) \(\text{MZM}\)